SHORT HYPOCOTYL IN WHITE LIGHT1, a serine-arginine-aspartate-rich protein in Arabidopsis, acts as a negative regulator of photomorphogenic growth.
نویسندگان
چکیده
Light is an important factor for plant growth and development. We have identified and functionally characterized a regulatory gene SHORT HYPOCOTYL IN WHITE LIGHT1 (SHW1) involved in Arabidopsis (Arabidopsis thaliana) seedling development. SHW1 encodes a unique serine-arginine-aspartate-rich protein, which is constitutively localized in the nucleus of hypocotyl cells. Transgenic analyses have revealed that the expression of SHW1 is developmentally regulated and is closely associated with the photosynthetically active tissues. Genetic and molecular analyses suggest that SHW1 acts as a negative regulator of light-mediated inhibition of hypocotyl elongation, however, plays a positive regulatory role in light-regulated gene expression. The shw1 mutants also display shorter hypocotyl in dark, and analyses of shw1 cop1 double mutants reveal that SHW1 acts nonredundantly with COP1 to control hypocotyl elongation in the darkness. Taken together, this study provides evidences that SHW1 is a regulatory protein that is functionally interrelated to COP1 and plays dual but opposite regulatory roles in photomorphogenesis.
منابع مشابه
Short Hypocotyl in White Light1 Interacts with Elongated Hypocotyl5 (HY5) and Constitutive Photomorphogenic1 (COP1) and Promotes COP1-Mediated Degradation of HY5 during Arabidopsis Seedling Development.
Arabidopsis (Arabidopsis thaliana) Short Hypocotyl in White Light1 (SHW1) encodes a Ser-Arg-Asp-rich protein that acts as a negative regulator of photomorphogenesis. SHW1 and Constitutive Photomorphogenic1 (COP1) genetically interact in an additive manner to suppress photomorphogenesis. Elongated Hypocotyl5 (HY5) is a photomorphogenesis promoting a basic leucine zipper transcription factor that...
متن کاملA basic leucine zipper transcription factor, G-box-binding factor 1, regulates blue light-mediated photomorphogenic growth in Arabidopsis.
Several transcriptional regulators have been identified and demonstrated to play either positive or negative regulatory roles in seedling development. However, the regulatory coordination between hypocotyl elongation and cotyledon expansion during early seedling development in plants remains unknown. We report the identification of a Z-box binding factor (ZBF2) and its functional characterizati...
متن کاملArabidopsis SHORT HYPOCOTYL UNDER BLUE1 contains SPX and EXS domains and acts in cryptochrome signaling.
Photomorphogenesis is regulated by red/far-red light-absorbing phytochromes and blue/UV-A light-absorbing cryptochromes. We isolated an Arabidopsis thaliana blue light mutant, short hypocotyl under blue1 (shb1), a knockout allele. However, shb1-D, a dominant allele, exhibited a long-hypocotyl phenotype under red, far-red, and blue light. The phenotype conferred by shb1-D was caused by overaccum...
متن کاملMolecular interactions of GBF1 with HY5 and HYH proteins during light-mediated seedling development in Arabidopsis thaliana.
Arabidopsis bZIP transcription factor, GBF1, acts as a differential regulator of cryptochrome-mediated blue light signaling. Whereas the bZIP proteins, HY5 (elongated hypocotyl 5) and HYH (HY5 homologue), are degraded by COP1-mediated proteasomal pathways, GBF1 is degraded by a proteasomal pathway independent of COP1. In this study, we have investigated the functional interrelations of GBF1 wit...
متن کاملCOP1 mediates dark-specific degradation of microtubule-associated protein WDL3 in regulating Arabidopsis hypocotyl elongation
CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), a well-known E3 ubiquitin ligase, functions as a central regulator of plant growth and photomorphogenic development in plants, including hypocotyl elongation. It has been well-established that, in darkness, COP1 targets many photomorphogenesis-promoting factors for ubiquitination and degradation in the nucleus. However, increasing evidence has shown that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 147 1 شماره
صفحات -
تاریخ انتشار 2008